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The Lifshitz Tail and Relaxation to Equilibrium in the
One-Dimensional Disordered Ising Model
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We study spectral properties of the generator of the Glauber dynamics for a 1D
disordered stochastic Ising model with random bounded couplings. By an
explicit representation for the upper branch of the generator we get an
asymptotic formula for the integrated density of states of the generator near the
upper edge of the spectrum. This asymptotic behavior appears to have the form
of the Lifshitz tail, which is typical for random operators near fluctuation
boundaries. As a consequence we find the asymptotics for the average over the
disorder of the time-autocorrelation function to be

( (_|
0 (t), _0(0)) P(|)) |=exp[&gt&kt1�3(1+o(1))] as t � �

with constants g, k depending on the distribution of the random couplings.

KEY WORDS: Glauber dynamics; stochastic Ising model; stochastic disor-
dered systems; density of states; asymptotics of decay of correlations.

1. INTRODUCTION AND MAIN RESULTS

We consider the Glauber dynamics for a one-dimensional random Ising
model with formal Hamiltonian

H(_, |)= :
n, n$ # Z

|n&n$|=1

|n, n$_n_n$ , _n=\1 (1)

Here _ # 0=[+1, &1]Z; |n, n$=|n$, n=|b # R are independent identically
distributed random variables marked by bonds b=(n, n$), |n&n$|=1 of
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the lattice Z, and we denote by pb= p the common probability distribution
of |b . Let B be the set of all bonds of Z. Then the family of random
variables |=[|b , b # B] forms a random field on B with the space of
realizations RB and the probability distribution P= pB. The random field
| is ergodic with respect to the group of translations on the lattice Z.

It is known (see, e.g., ref. 1) that for any fixed realization of the ran-
dom couplings | and for any temperature T=1�; the random spin system
with Hamiltonian (1) has a unique limit Gibbs measure +;(|). The
measure +;(|) determines a non-homogeneous Markov chain on Z with
the state space [&1, 1], transition probabilities

P|(_n+1 | _n)=
e ;|n, n+1 _n _n+1

2 cosh ;|n, n+1

, n # Z, _n=\1

and the stationary distribution &0(_=1)=&0(_=&1)= 1
2 (see in details ref. 2).

We denote by H|=L2(0, d+;(|)) the space of functions on 0, and
we define the generator of the stochastic Ising model with Hamiltonian (1)
by the following way:

L ;(|) f (_)= :
n # Z

c(n, _, |)( f (_(n))& f (_)), f (_) # D/H| (2)

The operator (2) is defined on cylindrical functions D/H| , and it can be
extended in H| , to a self-adjoint (unbounded) operator (see ref. 3), which
will be denoted later by the same symbol.

The operator (2) generates a single-spin dynamics with the flip rates

c(n, _, |)=
1

1+e&2n(_, |) ,

2n(_, |)=;H(_(n), |)&;H(_, |)=&2;(|n, n&1 _n_n&1+|n, n+1_n_n+1)

_(n) # 0 is a configuration, which differs from the configuration _ # 0 only
at the point n:

_ (n)
k ={_k ,

&_n ,
k{n,
k=n

We denote by

_|(t)=[_|
n (t), t�0, n # Z], _|(t) # 0 (3)
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the corresponding stationary Markov process on 0 with invariant measure
+;(|), which is usually called as the Glauber dynamics. Let

S|(t)=exp[tL ;(|)]

denote the corresponding stochastic semigroup on H| .
In this paper basing on the spectral analysis of the generator (2) we

obtain some new results on the relaxation to the equilibrium for the system
(3) under additional assumptions on the random couplings.

We suppose, that

(1) the random variables |b are finite;

(2) the random variables |b are positive and bounded away from
zero, so that:

0<#0�|b�#<�, #0<#, #=inf[C: Pr(|b>C)=0] (4)

(3) # is the isolated maximum for |b , so that

Pr(|b=#)= p0>0, Pr(#1<|b<#)=0 with some #0<#1<# (5)

Remark. The first condition guarantees the presence of the spectral
gap of the generator (2) for any realization of the random couplings, see
(16) below. The conditions (2)�(3) are necessary by technical reasons.

We denote by

L$(|)=L;(|)|H| �[1] (6)

the restriction of the operator (2) on the space H| � [1] of functions
orthogonal to constants. The main result of the present paper is the
calculation of the integrated density of states of the operator (6) near the
upper spectrum edge. Then using the asymptotic formula for this function,
we find the asymptotics for the averaged correlations:

((_|
0 (t), _0(0)) P(|)) | as t � �

Here ( } ) P(|) is the average over the process (3) corresponding to a fixed
realization |, and ( } )| is the average over the distribution P of the ran-
dom potential.

Our analysis is based on explicit representations for the restrictions of
the generator (2) on invariant subspaces, which have been obtained in the
paper.(2) Some partial results about invariant subspaces for this model
without randomness have been known earlier, starting with the original
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paper of R. Glauber.(9) He observed in fact the first invariant subspace for
the generator of the 1-D stochastic Ising model due to a simple structure
of this subspace, see (8) below. There exist also results about the construc-
tion of invariant families of functions, using dual processes approach, see
for instance the work of F. Spitzer.(10) However we need here more precise
description of the invariant subspaces by the explicit construction of the
orthonormal basis. So first we remind constructions and results about the
complete spectral decomposition for the operator (2) from ref. 2. Let us
note that results 1�3 below are valid for any fixed bounded realization
| # RB.

1. For any bounded realization of the random couplings | the space
H| is decomposed into a direct sum of subspaces invariant with respect to
the operator L ;(|):

H|= �
�

k=0

H (k)
|

There is an orthonormal basis in H (k)
| for any k=0, 1, 2... . Functions from

this basis in H (k)
| are marked by k-point subsets of the lattice

I=[n1 , n2 ,..., nk]/Z, |I |=k

and have a multiplicative structure:

vI (|)= `
n # I

vn(|), v<#1

with

vn(|)=D&1(|) _n=
_n&tanh ;|n&1, n } _n&1

(1&tanh2 ;|n&1, n)1�2 , n # Z (7)

If we denote by

L;
k(|)=L ;(|)| H|

(k)

The restriction of L ;(|) on the invariant subspace H (k)
| , then we have for

the spectrum of L ;(|):

spec L ;(|)= .
�

k=0

spec L;
k(|)
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2. For any bounded realization | the linear span of the functions

[_n , n # Z] (8)

is the same as the first invariant subspace H (1)
| , so that the functions (8)

also form a basis (non-orthogonal) in H (1)
| . From (7) it follows that

_n=D(|) vn(|)= :
m # Z

Dn, m(|) vm(|) (9)

with

Dn, n(|)=(1&tanh2 ;|n&1, n)1�2,

Dn, m(|)=tanh ;|n&1, n . . . tanh ;|m, m+1(1&tanh2;|m&1, m)1�2,

if m<n

and

Dn, m(|)=0, if m>n

The operator L1(|)#L;
1(|) has the following representation in the basis (8):

L1(|) _n=Pn(|) _n+1&_n+Bn&1(|) _n&1 (10)

Here

Pn(|)= 1
2 (tanh(;|n, n&1+;|n, n+1)&tanh(;|n, n&1&;|n, n+1)) (11)

Bn&1(|)= 1
2 (tanh(;|n, n&1+;|n, n+1)+tanh(;|n, n&1&;|n, n+1)) (12)

are bounded random fields.

3. For any bounded realization | there is a unitary mapping:

V(|): H (1)
| � l2(Z), vn(|) � en , en(m)=$n, m # l2(Z) (13)

and the operator L� 1(|)=V(|) L1(|) V*(|) has the following representa-
tion in the orthonormal basis [en , n # Z] of the Hilbert space l2(Z):

L� 1(|) en=L� n, n&1en&1+L� n, nen+L� n, n+1en+1 (14)

by a symmetric matrix

L� =L� (|)=D&1(|) L(|) D(|) (15)
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where

L� n, n&1=
an(1&a2

n)1�2 (1&a2
n&1)1�2

(1&a2
na2

n&1)
,

L� n, n+1=
an+1(1&a2

n)1�2 (1&a2
n+1)1�2

(1&a2
n a2

n+1)
,

L� n, n=&1&
a2

n(1&a2
n&1)

(1&a2
na2

n&1)
+

a2
n+1(1&a2

n)
(1&a2

na2
n+1)

with

an=an(|)=tanh ;|n&1, n

Here L(|) is the matrix, associated with the representation (10), and the
matrices D&1(|), D(|) are defined by (7) and (9).

4. In the case when random variables |b are uniformly bounded (i.e.,
under only the first assumption on the couplings):

||b |�#, #=inf[C>0: Pr( ||b |>C )=0]

the spectrum of L ;(|) is non-random for P-a.e. |, and it is the same as

spec L ;(|)=[0] _ .
�

k=1

[&k&k tanh 2;#, &k+k tanh 2;#]

where

[0]=spec L;
0(|),

[&k&k tanh 2;#, &k+k tanh 2;#]=spec L;
k(|), k # N

In this case for any fixed realization | we have a spectral gap

g|�1&tanh 2;# (16)

and there is the spectral gap g=1&tanh 2;# with probability 1.
The main result of this paper are the following.

Theorem 1. Let |b , b # B, be i.i.d. random variables meeting
(4)�(5) with p0=Pr(|b=#), where # is the isolated maximum, and we
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denote by N(L1 , d*) the integrated density of states of the operator L1(|).
Then

ln N(L1 , (*, *0))

=&
? - tanh 2;#

- 2(*0&*)
ln

1
p0

(1+o(1)), as *Z*0=&1+tanh 2;#

Theorem 2. Under conditions of theorem 1 the following asymp-
totic formula for the time-autocorrelation function holds

((_|
0 (t), _0(0)) P(|)) |=e&gt&kt 1�3(1+o(1)) as t � � (17)

with

g=1&tanh 2;#, k=k( p0)=
3
2

?2�3 \ln
1

p0+
2�3

(tanh 2;#)1�3

Remark 1. Let us note that Property 4 immediately implies the
following upper bound on the correlations (uniformly by |):

(_|
0 (t), _0(0)) P(|)�Ce&gt (18)

where g=1&tanh 2;# and C is an absolute constant.
We will prove that the convergence to the equilibrium in average is

more fast than the right-hand side of the estimate (18), and even more fast
than in the translation-invariant case, when |b## for any b # B:

(_0(t), _0(0)) P(#)=
1

- t
e&gt(k0+o(1))

as t � � with a constant k0 . The last asymptotics has been proved in ref. 4.

Remark 2. In particular the asymptotics (17) holds, if the random
variables |b take a finite number of positive values.

2. PROOF OF THEOREM 1

The proof is based on the representation (10) for the operator L1(|)
and on methods for the calculation of the integrated density of states in
some one-dimensional disordered systems, see refs. 5 and 6.

We introduce now the integrated density of states N(L1 , d*) for the
random operator L1(|) by the following way. Let us consider truncations
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L(r)
1 (|), r # N of the operator L1(|), corresponding to the representation

(10). Namely the operators L (r)
1 (|) is given by (10) in the finite-dimen-

sional space of functions of the form

{ f (r)(_)= :
r

n=&r

fn _n=
Matrices L(r)(|) associated to the operators L (r)

1 (|) have the form of
Jacobi matrices of the order 2r+1 with positive entries Pn(|), Bn(|),
n=&r,..., r. Consequently, for any r the operator L (r)

1 (|) has only real
eigenvalues, and the spectra of L (r)

1 (|) are concentrated on the same real
segment

2=[&1&tanh 2;#, &1+tanh 2;#]

We denote by kr(L1(|), *) a non-decreasing function equal to the
number of eigenvalues of the operator L (r)

1 (|) not exceeding *. Let
Nr(L1(|), d*) be a measure of R, associated with the distribution function

Nr(L1(|), *)=Nr(L1(|), (&�, *))=
1

2r+1
kr(L1(|), *)

Lemma 1. There is a non-random positive measure N(L1 , d*) on R,
such that with probability one

lim
r � �

Nr(L1(|), d*)=N(L1 , d*) (19)

in the sense of weak convergence of measures.
The measure N(L1 , d*) is relates to the resolution of the identity of the

operator L� 1(|) by:

N(L1 , d*)=( (EL� 1(|)(d*))0, 0) |#( (EL� 1(|)(d*) e0 , e0))| (20)

Proof. Follows by standard arguments (see, e.g., ref. 7). We prove
that moments of the measures Nr(L1(|), d*) converge. For any p=0,
1, 2,... we have

(2r+1) |
2

* pNr(L1(|), d*)=Tr(L (r)
1 (|)) p

= :
|n|�r

|n1|�r,..., |np&1|�r

(L(r)(|))n, n1
} } } (L(r)(|))np&1 , n

(21)
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Here 2/R is a segment, where the spectra of the operators L (r)
1 (|) are

concentrated for any r. As r � � we could rewrite the right-hand side of
(21) as follows:

:
|n|�r

n1 ,..., np&1 # Z

(L(|))n, n1
} } } (L(|))np&1 , n+O(1)

= :
|n|�r

(L p(|))n, n+O(1)

= :
|n|�r

(D&1(|) L p(|) D(|))n, n+O(1) (22)

where the matrices D(|) and D&1(|) are defined by (9) and (7). Here
L p(|) and D&1(|) L p(|) D(|)=L� p(|) are infinite matrices associated
with the representation of the same operator L p

1(|) in the bases

[_n , n # Z] and [vn , n # Z]

respectively.
The last equality in (22) is the most important for us. The construction

(13)�(15) implies that the right-hand side of (22) is the same as

:
|n|�r

(L� p
1(|))n, n+O(1) as r � �

From this and (21) applying the ergodic theorem, we have that with prob-
ability 1:

lim
r � � |

2
* pNr(L1(|), d*)= lim

r � �

1
2r+1

:
|n|�r

(L� p
1(|))n, n

=( (L� p
1(|))0, 0) |

=|
2

* p( (EL� 1(|)(d*) e0 , e0)) |

=|
2

* p( (EL� 1(|)(d*))0, 0) |

Lemma 1 is proved.
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3. CONSTRUCTION OF AN AUXILIARY OPERATOR L� 1(|)

We introduce now an operator L� 1(|) in l2(Z) similar to L� 1(|), such
that all components of the spectra of these operators (including pure point
components) are the same. In addition the truncations L� (r)

1 (|) and L (r)
1 (|)

of the operators L� 1(|) and L1(|) have the same set of eigenvalues for
any r.

We consider a random operator L� 1(|) given in l2(Z) as follows:

(L� 1(|) f )(n)=Pn(|) f (n+1)& f (n)+Bn&1(|) f (n&1), f # l2(Z)

(23)

with random fields Pn(|), Bn(|), n # Z, defined by (11)�(25). Then the
following lemma holds.

Lemma 2. For any bounded realization of the random couplings |
the operators L� 1(|) and L� 1(|) are similar, so that

(1) spec L� 1(|)=spec L� 1(|)=spec L1(|),

(2) specpp L� 1(|)=specpp L� 1(|)=specpp L1(|).

In addition for any truncations of the operators L� 1(|) and L1(|) we have:

(3) spec L� (r)
1 (|)=spec L (r)

1 (|), and kr(L� 1(|), *)=kr(L1(|), *).

Proof. By (23) and (10) the operator L� 1(|) has the following
representation in the basis [en , n # Z]:

L� 1(|) en=:
m

L$n, m em (24)

where L$ is the matrix transposed to the matrix L, which has been intro-
duced by (10) and (15). On the other hand, L� 1(|) is the self-adjoint
operator in l2(Z), and by (14) and (15) we have:

L� 1(|) en=:
m

L� $n, m em=:
m

(D$L$(D$)&1)n, m em (25)

The representations (24) and (25) imply that the operators L� 1(|) and
L� 1(|) have the similar matrices in the basis [en]. Consequently, the
operators L� 1(|) and L� 1(|) are similar, and all components of their spectra
are the same.
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The last statement about truncated operators evidently follows from
the representations (23) and (10), since the matrices corresponding to the
operators L� (r)

1 (|) and L (r)
1 (|) are transposed. Lemma is proved.

We denote by

k� r(L1(|), *)=(2r+1)&kr(L1(|), *)

a function equal to the number of eigenvalues of L(r)
1 (|) exceeding *. Let

us consider a random operator in l2(Z)

A=A(|)=(2K&1) E&L� 1(|)

where 2K=tanh 2;#; E is the identity operator, and denote as above by
A(r)(|) the truncations of A(|) on [&r, r], r # N. Then Lemma 2 implies
that

spec A=[0, 2 tanh 2;#] with probability 1

and

kr(A(|), a)&1�k� r(L1(|), *)�kr(A(|), a) (26)

with a=2K&1&* for any realization | and any r # N.

4. THE OSCILLATION THEOREM

In this section we study spectral properties of the operator A(|),
corresponding some fixed realization | of the random couplings. Namely,
we will establish a connection between the shape of the realization | and
the number of eigenvalues of A(r)(|), which are near the zero. We use here
the technique from ref. 5 based on the oscillation theorem. But we modify
it to our case, when the system is given by random dependent fields.

We fix a large enough r and some realization |. For any small positive
0<a<<1 we denote by

:J(a)=: (r)
J(a)= max

:j
(r)�a

: (r)
j

the maximal eigenvalue of A(r)(|) not exceeding a. Then

kr(A(|), a)=J(a)
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Let us consider the equation

(A(r)(|) f )(n)=&Pn(|) f (n+1)+2Kf (n)&Bn&1(|) f (n&1)

=:J(a) f (n) (27)

on the interval [&r, r] with some fixed boundary conditions. We notice
that the matrix Ar(|) associated with the operator A(r)(|) (27) is a Jacobi
matrix of the order (2r+1), and Pn(|)>0, Bn(|)>0, n # Z. By the oscilla-
tion theorem for Jacobi matrices (see, e.g., ref. 8) there is exactly (J(a)&1)
alternations in sign in the sequence of coordinates [ fJ(a)(n), n=&r,..., r] of
the eigenvector fJ(a)(n) for Ar(|) that is the solution of (27). It is suitable
in the general case to introduce the standard phase .j (n) as

cot .j (n)=
f j (n)

f j (n&1)
, n=&r+1,..., r

where [ fj (n)] r
n=&r is the eigenvector of Ar(|), corresponding to the eigen-

value :j . Therefore if we denote by mr(.J(a)) the number of such points
k # [&r, r], where

cot .J(a)(k)<0

then

kr(A(|), a)=mr(.J(a))+1 (28)

Let us preserve the notation f (n) for the solution of (27) equal to the eigen-
vector fJ(a)(n), and .(n) for the corresponding phase .J(a)(n). We rewrite
(27) as

\ f (n+1)
f (n) +=\

2K&:J(a)

Pn(|)
1

&
Bn&1(|)

Pn(|)
0 +\ f (n)

f (n&1)+
and denote by Tn=Tn(|, a) the transition matrix at point n:

\ f (n+1)
f (n) +=Tn \ f (n)

f (n&1)+
In the case when a point n connects random variables taking maximal

value #:

|n&1, n=|n, n+1=#
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the transition matrix T 0 has a form

T 0=\2&
: j(a)

K
1

&1

0 +
By a transformation

S=\&ei�

&1
e&i�

1 + (29)

one can diagonalize T 0:

S&1T 0S=\ei�

0
0

e&i�+ (30)

with

cos �=1&
:J(a)

2K
, 0<�<?

We recall that :J(a) is small enough: 0<:J(a)�a<<1. Consequently,
�=�(a) is also small, and has the order

�t
- :J(a)

- K

We introduce now a new phase /(n) by

S&1 \cos .(n)
sin .(n)+=Cn \ ei/(n)

e&i/(n)+ , n=&r+1,..., r (31)

with the standard phase .(n)=.J(a)(n) and constants Cn . From (29) and
(31) it follows that

cot .(n)=sin � } cot /(n)+cos � (32)

Remark. The relation (32) implies, that cot .(k)<0 if and only if

cot /(k)<&cot �, i.e., /(k) # (?l&�, ?l] (33)
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with some l # N. Thus if we denote by mr(/) the number of such points
k # [&r, r], where

cot /(k)<&cot �

then it follows from (28) that

kr(A(|), a)=mr(/J(a))+1 (34)

Let us consider the behavior /(n) in two cases.

1. So-called regular case, when |n&1, n=|n, n+1=#. Then Tn=T 0,
and (30), (31) immediately imply that

cot /(n+1)=cot(/(n)+�) (35)

so that the phase /(n) increases linearly on the parts of the interval
[&r, r], where the couplings take the maximal value.

2. In the general case, when at least one of |n&1, n , |n, n+1 does not
equal to #, Tn{T 0, and we can rewrite Tn as

Tn=T 0+$n

with

$n=\
(2K&:J(a))(K&Pn)

KPn

0

1&
Bn&1

Pn

0 + (36)

By (31), (29), (30) and (36) we get the following relation

cot /(n+1)=
Bn&1

Pn
cot(/(n)+�)+

1
sin �

(2K&:J(a))(K&Pn)
KPn

+\1&
Bn&1

Pn + cot �

=
Bn&1

Pn
cot(/(n)+�)+

2K&Pn&Bn&1

Pn
cot � (37)

The conditions (4)�(5) on the couplings imply that in this case

0<
1

W
�8n(|)#

Bn&1(|)
Pn(|)

�W<� (38)

714 Zhizhina



and

�>Vn(|)#
2K&Pn(|)&Bn&1(|)

Pn(|)
�$>0 (39)

with

W#W(#0 , #)=
tanh(;#+;#0)+tanh(;#&;#0)
tanh(;#+;#0)&tanh(;#&;#0)

>1, (40)

0<$#$(#0 , #, #1)<1 (41)

The bounds (38)�(39) are uniform by the random couplings | and depend
on parameters of the distribution p of the potential |b : #0 , # and #1 , where
#1=sup(supp p"#)<#. Now we could rewrite the equation (37) using the
notations from (38)�(39) by the following way

cot /(n+1)=8n(|) cot(/(n)+�)+Vn(|) cot � (42)

Definition. We call an interval [k1 , k2]�[&r, r] as regular, if
|b=# for any bond b # [k1 , k2] of this interval.

Lemma 3 (The ``invariance'' property for /). Let � be small
enough. If

0</(k)</cr=arccot
$

2W�

and the point (k&1) is the beginning of a regular interval of the length s
with

0<s<scr=
?
�

&
4W

$

then

0</(k+s)</cr

Furthermore, for any point in the regular interval we have

/(k+s$)<?&3�, s$<s

so that /(k+s$) doesn't meet (33), when s$�s<scr .
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Proof. Follows from (35) and (42) in a similar way as in ref. 5. The
relation (35) together with the inequalities arccot x<1�x (x>0) and
(40)�(41) imply that

/(k+s&1)=/(k)+(s&1) �

<
2W�

$
+?&

4W�

$
&�=?&

2W�

$
&�<?&3�

This bound is also valid for any positive integer s$�s<scr . Since
|k+s&1, k+s<#, then by (38)�(42) we get

cot /(k+s)>&W cot
2W�

$
+

$
�

&O(�)>

>
$

2�
&O(�)>

$
2W�

=cot /cr (43)

Here we used the inequality cot x<1�x and the inequality cot x>
1�x&O(x), which is valid for small positive x. Since cot x is the monotone
decreasing function, the inequality (43) implies that

0</(k+s)</cr

Lemma is proved.
Lemma 3 shows that between two consecutive alternations in sign in

the coordinates for fJ(a)(n) one must find at least one regular interval of the
length s�scr . On the other hand by (35) any regular interval of the length
greater than [?��] provides an additional alternation in sign for fJ(a)(n).
From this reasoning and (34) we get the following inequality:

Rr \_?
�&+1++1�kr(A(|), a)�Rr(scr)+2 (44)

where Rr(s) is the number of intervals of the length s, which can be
arranged without overlapping within the regular intervals on [&r, r]
associated with the realization | on [&r, r]. From (44) and (26) it follows
that

1
2r+1

Rr \_?
�&+1+�

k� r(L1(|), *)
2r+1

�
1

2r+1
Rr(scr)+

2
2r+1

(45)

with *=*0&a, where *0=&1+tanh 2;# is the upper edge of the a.e.-
spectrum of L1(|).
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By averaging the inequality (45) over all realizations, after taking the
limit r � � we have:

c :
�

j=1

P \ j \_?
�&+1++�N� (L1 , *)�c :

�

j=1

P( jscr) (46)

where

N� (L1 , *)=|
*0

*
N(L1 , d*)=N(L1 , (*, *0))

and the measure N(L1 , d*) was defined in (19);

scr=
?
�

&d, d=
4W
$

(47)

is the absolute constant,

�=
- *0&*

- K
(1+=0(*)), =0(*) � 0 as * � *0&0 (48)

and

P( js)=
p js

0

1& p0

(49)

is the probability that the regular interval has a length nog less than js.
Here we used lemma 1 and the ergodicity of the random field |, which
implies that

lim
r � �

1
2r+1

(Rr(s)) |=c :
�

j=1

P( js)

with c= p0(1& p0). Taking into account (47)�(49), we could rewrite (46)
as:

&
?
�

ln
1
p0

+k1�ln N� (L1 , *)� &
?
�

ln
1
p0

+k2

with constants kj=kj ( p0 , W, $), j=1, 2, k1<k2 .
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Therefore the following, asymptotic formula holds

ln N� (L1 , *)=&
? - K

- *0&*
ln

1
p0

(1+=(*)), =(*) � 0 as *Z*0 (50)

Theorem 1 is proved.

5. PROOF OF THEOREM 2

In what follows we shall use the notation ( } )#( } )| for the average
over P. Using the spectral theorem together with properties 1�3 of the
generator L ;(|) we have:

((_|
0 (t), _0(0)) P(|)) =�| et*(EL ;(|)(d*) _0 , _0)H|�

=| et*( (EL 1(|)(d*) _0 , _0)H |
(1))

=| et*( (EL� 1(|)(d*) f0 , f0) l2(Z)) (51)

Here

[EL ;(|)(d*)], [EL 1(|)(d*)], [EL� 1(|)(d*)]

are the resolutions of the identity of the operators L;(|), L1(|), L� 1(|)
respectively, and

f0= f0(|)=V(|) _0 # l2(Z)

We denote by (EL� 1(|)(d*))n, m the matrix elements of EL� 1(|)(d*) in the
orthonormal basis [en] of l2(Z):

(EL� 1(|)(d*))n, m=(EL� 1(|)(d*) en , em)

Lemma 4. There exist such absolute constants 0<C1<C2<�,
that

C1( (EL� 1(|)(d*))0, 0)�( (EL� 1(|)(d*) f0 , f0)) �C2( (EL� 1(|)(d*))0, 0) (52)
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Proof. Under assumption (4) we have the following for the coef-
ficients Dn, m(|) in the decomposition (9):

Dn, m(|)>0, if m�n (53)

sup
|

sup
n

:
m

Dn, m(|)#d(#)<� (54)

with a constant d(#). Using (53)�(54) we get the upper bound:

( (EL� 1(|)(d*) f0 , f0))=( (EL� 1(|)(d*) V(|) D(|) v0 , V(|) D(|) v0))

=�\:
n

D0, n(|) EL� 1(|)(d*)) en , :
m

D0, m(|) em+�
=� :

n, m

D0, n(|) D0, m(|)(EL� 1(|)(d*))n, m�
�d 2(#) sup

m, n
( (EL� 1(|)(d*))n, m)

�d 2(#)( (EL� 1(|)(d*))0, 0) (55)

In the last estimate we used Cauchy�Schwarz�Bunyakovskii inequality and
the ergodicity of L� 1(|).

We denote by

c=max
|

1
1&tanh2 ;|&1, 0

=
1

1&tanh2 ;#

Then the lower bound follows from (7) and (13):

( (EL� 1(|)(d*))0, 0) =( (EL 1(|)(d*) v0 , v0))

�c } ( (EL 1(|)(d*) _0 , _0)

+2 tanh ;|&1, 0 |(EL 1(|)(d*) _0 , _&1)|

+tanh2 ;|&1, 0 } (EL 1(|)(d*) _&1 , _&1))

�4c( (EL 1(|)(d*) _0 , _0))=4c( (EL� 1(|)(d*) f0 , f0))

We used here also Cauchy�Schwarz�Bunyakovskii inequality and the
ergodicity of L1(|).
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Setting

C1=
1
4c

, C2=d 2(#)

we get (52). Lemma is proved.
Finally by the integration by parts from (51), (52), (20) and (50) we

have for I(t)=((_|
0 (t), _0(0)) P(|)) | as t � �

I(t)�C2 _tet*0 |
a

0
exp {&t+&

? - K

- +
ln

1
p0

(1+=(+))= d++O(et(*0&a))&
(56)

I(t)�C1 _tet*0 |
a

0
exp {&t+&

? - K

- +
ln

1
p0

(1+=(+))= d++O(et(*0&a))&
(57)

Here C1 , C2 are constants, *0=&1+tanh 2;#, K= 1
2 tanh 2;#, +=*0&*,

=(+) � 0 as + � 0, and a is small enough. After changing of variables
+=t&2�3u we could rewrite the first term in the right-hand side of (56)�(57)
as:

Ctet*0 |
�

0
exp {&t1�3 \u+

? - K

- u
ln

1
p0 \1+= \ u

t2�3++= du

=exp {&tg&t1�3 \ln
1
p0+

2�3

(tanh 2;#)1�3 _3
2

?2�3+o(1)&=
as t � �, g=|*0 |=1&tanh 2;#. This formula together with (56)�(57)
implies the asymptotics (17).

Theorem 2 is proved.

ACKNOWLEDGMENTS

The author is deeply grateful to Professors R. Minlos, L. Pastur and
H. Spohn for useful discussions. The author would like to thank Professor
H. Spohn for kind hospitality at the Mathematical Department of TU,
Mu� nchen, where this work was started. The work is partially supported by
the Russian Foundation for Basic Research, Grants No. 99-01-00284, 96-
01-10020, 97-01-00714 and by DFG Grant 436 RUS 113�485�1.

720 Zhizhina



REFERENCES

1. V. A. Malyshev and R. A. Minlos, Gibbsian Random Fields (Kluwer Academic Publishesrs,
1991).

2. S. Albeverio, R. Minlos, E. Scacciatelli, and E. Zhizhina, Spectral analysis of the disor-
dered stochastic 1-D Ising model, Commun. Mathem. Phys., to appear.

3. Th. Liggett, Interacting Particle Systems (Springer-Verlag, 1985).
4. R. A. Minlos, Invariant subspaces of Ising stochastic dynamics (for small ;), Markov

Processes and Related Fields 2(2):263�284, (1996).
5. S. A. Gredeskul and L. A. Pastur, Behavior of the density of states in the one-dimensional

disordered systems near the spectrum bounds, Teor. and Matem. Physika, 23(1):132�139,
(1975).

6. L. A. Pastur, Disordered spherical model, J. Stat. Physics, 27(1):119�151, (1982).
7. L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators (Springer-

Verlag, 1991).
8. F. R. Gantmaher, M. G. Krein, Oscillation Matrices and Small Oscillations of Mechanical

Systems (OGIZ, Moscow�Leningrad, 1941).
9. R. Glauber, Time dependent statistics of the Ising model, J. Math. Phys. 4:294-307 (1963).

10. F. Spitzer, Infinite systems with locally interacting components, Ann. Probab. 9(3):349.

721Relaxation to Equilibrium of 1D Disordered Ising Model


